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Numerical study of the out-of-equilibrium phase space of a mean-field spin glass model
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~Received 29 May 1998!

We present a numerical study of the nonequilibrium dynamics of the Sherrington-Kirkpatrick model. We
analyze the behavior of the system for different system sizesN and time scalest, in order to identify the correct
out-of-equilibrium regime. We find evidence of aging behavior in the dynamics of the system, compatible with
a weak-ergodicity breaking scenario. In addition, we obtain a pictorial characterization of the out-of-
equilibrium phase space that presents some analogies with the hierarchy of states found in equilibrium.
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I. INTRODUCTION

The past few years have witnessed an upsurging inte
in the nonequilibrium properties of spin glasses@1–3#. Ex-
periments have shown a very rich behavior in many differ
materials~see, for example,@4–6#! that is generically defined
as the ‘‘aging phenomenon.’’ Simulations carried out f
three-dimensional spin glass models@7# showed some of the
characteristics~slow dynamics, aging! seen in experiments
but a complete theoretical interpretation of the phenome
is still lacking. Recently, a theoretical analysis@8# of the
nonequilibrium dynamics of mean-field models, such us
Sherrington-Kirkpatrick~SK! model @9#, has contributed to
shedding light on the issue. Despite the mean-field appr
mation, the SK model shows a rich nonequilibrium behav
that is still not completely understood. In particular, it will b
interesting to have a clear picture of the phase space in w
the model evolves, in order to connect its behavior with
cently proposed phenomenological descriptions of ag
phenomena@10#.

Here we present a numerical study of the out-
equilibrium dynamics of the SK model, in order to obtain
description of the phase space. We find two clearly disti
dynamical regimes: a genuine out-of-equilibrium regime t
will be dominant in the thermodynamic limit followed by a
intermediate regime that is solely due to the finite syst
size. The second regime corresponds to the approach to
librium of a finite system. This result is based on the analy
of the dynamical behavior of the mean-square value of
overlap between two replicas, which is commonly employ
in simulations to determine the equilibration of the syst
@11–13#.

Once these regimes are clearly identified, we focus
analysis on the first regime, which is the one described th
retically @8#. We find that the behavior of the system is co
sistent with the ‘‘weak-ergodicity breaking scenario’’ pr
posed by Bouchaud@10,14#. In this scenario, the system
not confined in a finite region of the phase space and w
ders indefinitely in search of the equilibrium state. A cle
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picture of this behavior is obtained by studying the two-tim
autocorrelation functions.

The phase space visited by the system displays an in
esting self-similar landscape, which is reminiscent of the
erarchical structure found for theequilibriumphase space o
the model@1#. In addition, in order to obtain a pictorial view
of the dynamics of the system, we use thedynamics clona-
tion technique recently introduced@15–18#. In this way, we
show evidence that the system evolves through ‘‘valley
and ‘‘canyons,’’ rather than jumping between independ
‘‘traps.’’

This paper is organized as follows. In Sec. II we pres
the model and we discuss some general considerations
garding different limiting procedures leading to equilibriu
or nonequilibrium dynamics. Here we define what we me
for out-of-equilibrium dynamics. Section III is devoted to th
numerical results. At first~Sec. III A! we present a quantity
that we use for the determination of the equilibrium of t
system. By studying its scaling behavior with the size of t
system, we find two different dynamical nonequilibrium r
gimes. The scaling of the crossover time between the
regimes helps us to identify the first one as the authe
relevant regime for the out-of-equilibrium dynamics. In Se
III B we focus on thisout-of-equilibrium regime. Measuring
the autocorrelation functions we find generic aging prop
ties and a scenario compatible with aweak-ergodicity break-
ing. The energy density of the system and the staggered m
netization give further support to the analytical predictions
@8,19#. In Sec. III C we present the procedure of dynam
clonation@15–18# and report some results obtained with
Our conclusions are given in Sec. IV.

II. GENERAL CONSIDERATIONS

In the present work we study the Monte Carlo dynam
~with the Metropolis sequential updating algorithm! of the
SK model@9#, defined by the Hamiltonian

HJ@s#52
1

2 (
iÞ j

Ji j s is j . ~1!

TheJi j are random variables with variance 1/AN, whereN is
the total number of spins~or size of the system!.
7047 © 1998 The American Physical Society
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It is well known @1# that the SK model~1! undergoes a
phase transition atTc51. The order parameter is the Par
q(x) function that is related to the overlap distribution fun
tion of the equilibrium statesP(q): P(q)5(dq/dx)21 ~for a
recent numerical analysis, see@20#!. To monitor the order
parameter,q(x), we measure the first nonzero momentum
theP(q) overlap distribution, which, in the zero field case,
the second momentum. In the simulation, it corresponds

q2~N,t !5K F ~1/N! (
i 51,N

s i~ t !t i~ t !G2L . ~2!

Heres i(t) andt i(t) denote the configuration at timet of
two realizations of the dynamics (Ji j fixed!, with indepen-
dent randomly chosen initial configurations and independ
noise realization.~Hereafter we shall call themreplicas.! We
follow the standard notation, indicating the thermal avera
~different noise realization, but fixedJi j ) with ^•••&, and the
sample average~different chosenJi j ) with •••̄. In the
present work we always used at least 10 noise realizat
and 200 different samples~unless otherwise mentioned!.

Let us observe that, obviously, during a simulation a
measured quantityO always depends on the size of the sy
tem ~the number of spinsN) and on time~the number of
Monte Carlo sweeps preceding the measuring timet). The
equilibrium value is given by theasymptotic limit ~AL !
lim

t→`
O(N,t)5O(N). The thermodynamical analytical ca

culations give the equilibrium value for an infinite syste
that is, thethermodynamical limit~TL! of the equilibrium
quantity: lim

N→`
O(N)5Oeq. So, if we are interested in th

equilibrium properties of the system, we have to consider
after AL for the measured quantity. On the contrary, t
reverted limiting procedure~AL after TL! may give very
different results, especially if the system undergoes a ph
transition, that is, an ergodicity breaking due to the T
Some recent analytical works@21,8# deal with this opposite
ordered limit procedure to describe the out-of-equilibriu
properties of spin glasses. We call the asymptotic dynam
of an infinite system, in the sense of this order of limits~AL
after TL!, theout-of-equilibrium dynamics.

In a computer simulation, we cannot perform either AL
TL. We consider systems of growing sizes, and for each
we consider a time after which the system is equilibrat
The correct criterion for choosing such equilibration time
not so trivial, especially for systems like spin glasses, wh
evolve extremely slowly as shown clearly by experimen
We can consider the simulated spin glass equilibrated w
the two-times quantities~2TQ! do not depend explicitly upon
both times, but only upon the time difference@time transla-
tional invariance~TTI!#. ~We expect that this is enough for
mean-field model.! For example, if we consider the two
times autocorrelation function

CN~ t,t8!5K 1/N (
i 51,N

s i~ t !s i~ t8!L ~3!

we are sure that the system forgot the initial (t50) randomly
chosen configuration only for the TTI:CN(t,t8)5CN(t
2t8). Unfortunately, the measurements of 2TQ are v
computer time consuming. It would then be better to use
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equilibration criterion involving only one-time quantitie
~1TQ!. A typical ~1TQ!, for example, is the energy density o
the system at timet:

E~N,t !5~1/N!^H~ t !&. ~4!

However, in a glassy system, a 1TQ may reach
asymptotic value, very close to or equal to its equilibriu
value, even when the system is very far from equilibriu
i.e., the autocorrelation function~3! is far from being homo-
geneous in times.~In this work we try to show that this
happens for the energy density of the SK model.! Conse-
quently, checking for the asymptotic value of a 1TQ only c
lead to erroneous results.

III. NUMERICAL SIMULATIONS

A. The overlap as a criterion for equilibration

The quantityq2 ~2! is often used to determine the equil
bration of the SK model~for more subtle equilibration crite
ria, see@13#!. For example, the identityq25122TE @12# is
used in@11# to determine the timest,t0 to skip before col-
lecting the equilibrium measure.„E is the equilibrium value
of the energy density~4!: E5 lim

N→`
lim

t→`
@E(N,t)/N#….

On the contrary, in this work, we are interested in t
dynamical evolution before equilibration.

We check explicitly the hypothesis that measuringq2 rep-
resents a good criterion for equilibration, as shown in Fig
where we confront the measures ofq2 and of the autocorre-
lation functions~3!.

We concentrate much of our efforts studyingq2 before it
reaches the equilibrium value and in particular its scal
behavior with respect to the size of the system.

We simulate the dynamics ofq2(N,t) for several system
sizes at fixed temperature. The value ofq2(N,t50) is gen-
erally 1/N, because the starting configuration for each repl
is chosen randomly and independently. A different choice
the starting value ofq2 is not determinant for the subseque
dynamics, apart from the very first steps.

The dynamics ofq2(N,t) is characterized by a monotoni
growth ~on a logarithmic time scale! up to its equilibrium
value. We identify two nonequilibrium regimes, characte
ized by different scaling properties with respect to the size
the system.

~i! Out-of-equilibrium regime. In the first regime,q2(N,t)
scales as 1/N, with the law

q2~N,t !}~1/N!ln~ t !.

In Fig. 2 we show the~size-independent! quantityNq2(N,t)
versust for systems of different size.~The temperature de
pendence is restricted to the proportionality constant.!

~ii ! Intermediate regime. As the q2(N,t) reaches a frac-
tion of its equilibrium value, the scaling behavior chang
Figure 3 shows the departure of theNq2(N,t) from the ‘‘uni-
versal’’ ~that is, largeN) curve for systems of different sizes
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FIG. 1. The autocorrelation functions~3! become time-homogeneous only whenq2(N,t) ~in the insets! reaches its equilibrium value. In
~a! the system~64 spins! is equilibrated (T50.5Tc) as shown by the independence of the autocorrelation functionsC(tw1t,tw) by tw(tw

5100, 200, 400, 800, and 1600 Monte Carlo sweeps!. In the inset,q2(N,t) has reached its equilibrium value. In~b! the system~480 spins,
T50.5Tc) is out-of-equilibrium. The autocorrelation functions show a strong dependece oftw ~from bottom to top, tw

51000,2000,4000,6000,8000). In the inset the equilibrium value ofq2(N,t) is greater than 0.3 for the chosen temperatureT50.5Tc). The
data refer to 200 different samples~i.e., 200 different chosen$Ji , j%). For each sample we use at least 10 replicas~see text! to measure
q2(N,t).
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We tried a fit for this scaling. Here we simply mention th
qualitatively, we get a 1/Na scaling~with a temperature de-
pendent, ranging from 1 to 1/3). We called this new scal
regime theintermediate regime. Let us note here that th
q2(N,t) is a highly non-self-averaging quantity, and th
sample-to-sample fluctuations are strong. So a plausible
terpretation for the intermediate regime behavior is that so
of the simulated replicas reach equilibrium during this
gime and the others do not. In this sense we think of t
regime as a transient between the well defined out
equilibrium regime and the equilibrium dynamics of the sy
tem.

The crossover between the two regimes is shown in
inset of Fig. 3. We define the crossover timetco as the time
before the difference between theNq2(N,t), and the univer-
sal curve lim

N→`
Nq2(N,t) reaches a fixed tolerance valu

We believe this is a linear behavior.
Let us note here that an infinite sized system, started f

a random configuration~i.e., physically, a system after a
infinitely fast quench from very high temperature or ma
netic field!, will always stay in the first out-of-equilibrium
regime. The value ofq2(t)5 lim

N→`
q2(N,t) would be iden-

tically zero, indicating that each replica is orthogonal~zero
,

g

n-
e

-
is
f-
-

e

m

-

FIG. 2. q2(N,t) in the out-of-equilibrium regime multiplied by
N for systems of different sizes (N564, 96, 160, 640, 1280, and
1920 spins!. For the chosen temperature (T50.2Tc) the curves
seem to collapse in the simulated time window (t,2000 Monte
Carlo sweeps!. The data refer to a minimum of 10 replicas for ea
of the 200 samples.
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7050 PRE 58ANDREA BALDASSARRI
scalar product of the vector configurations! with respect to
the other. It means that each replica visits a different mu
ally orthogonal sector of the phase space.

B. Out-of-equilibrium regime

As we are interested in the out-of-equilibrium dynam
of the model, in the sense of the ordered limit procedure
after TL, we study the dynamics of some quantities in
first dynamical regime, i.e., the out-of-equilibrium regime

The autocorrelation function~3! shows aging behavio
~see Fig. 4!, compatible with the weak-ergodicity breakin
hypothesis@10#.

We cannot exclude a nonzero asymoptotic value of
autocorrelation functions, but as we do not see evidenc
this in our simulated time windows, we will assume in t
discussions a true weak-ergodicity breaking scenario.

Remarkably enough, if we plot the autocorrelation fun
tion C(tw1t,tw) versust/tw , they do not collapse~there is
not a simplet/tw law!, but all cross at a certain value.

The relaxational dynamics of the energy density for
SK model has been extensively studied~for example in
@22#!. Here we want to focus on its asymptotic value. To t
aim, we reparametrize the energy density curve with resp
to the overlap q2 , which serves here as a dynamic
‘‘clock,’’ indicating the equilibration stage of the system
time t.

Figure 5 shows the result of such reparametrization. T
line is the equilibrium relationE52b/2(12q2). The first
two curves refer to systems that reach equilibrium at the
of the simulation. The others, with growing size, are farth

FIG. 3. Crossover from the out-of-equilibrium regime to t
intermediate regime. The plot represents the quantityNq2(N,t) vs t
for several systems of growing size (N532, 64, 128, 192, 256, 320
640, and 1280 spins! evolving atT50.5Tc . Note that the curves
associated toN5640 andN51280 collapse, indicating that the tw
systems are still both in the out-of-equilibrium regime for the wh
time window (t,100 Monte Carlo sweeps!. The curve for N
51280 has been used as the limiting curve for the determinatio
the crossover time (tco). For these curves we have used 10
samples. In the inset the cross-over time (tco) is displayed as a
function of N with a tentative linear fit.
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from equilibrium, but closer to the energy density equili
rium value.

A plausible proposal for the limiting curve associat
with an infinite system is a step function that, starting fro
E50, q250, abruptly collapses to the constant valueE

of

FIG. 4. Autocorrelation functionsC(tw1t,tw) vs t/tw for dif-
ferent tw(tw5100, 200, 400, 800, 1000, 1200, 1400, and 16
Monte Carlo sweeps!. The data refer to a system ofN5640 spins
evolving atT50.5Tc .

FIG. 5. Energy densityE(N,t) versus the corresponding valu
of q2(N,t) ~time becoming a parameter!. From top to bottom, the
curves refer to growing-sized systems (N
564,160,320,640,1280,2560) evolving at the same temperatuT
50.5Tc . The first two curves~smaller systems! achieved equilib-
rium in the simulated time range; the remaining curves refer
systems that did not achieve the equilibrium. The relation shown
a stright line @indicating the equilibrium value forE(N,t) and
q2(N,t)] is correct for any size with a Gaussian coupling distrib
tion. In our simulation we do not expect a strict validity of th
relation for finite-sized systems, because we use for the coupl
Ji j a two-value$21;1% distribution. Moreover, we have larger e
rors on the abscissa values, due to the lack of self-averagene
q2(N,t) ~large sample-to-sample fluctuations!.
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5Eeq for q2.0. Besides, it means that this 1TQ does n
represent a good choice for the determination of the eq
bration time. To corroborate such a result, we summa
here previously published results@19#.

Considersl the projection of the configuration vecto
sW (t)5$s i(t)% on the set of eigenvectorsJW (l) of the cou-
pling matrix $Ji j %. We measure the so-called staggered m
netization, i.e., gN,t(l)5^@sl(t)#2&, where sl(t)
5( i 51,Nl is i(t), $l i% being the coordinates of thel̂ eigen-
vector of the coupling matrix (( j 51,NJi , jl j5l̂l i).

The staggered magnetization is a distribution that conta
a lot of information. In particular, its first momentum is th
energy density ~4!. More precisely, lim

N→`
E(N,t)

52 lim
N→`

*22
2 lr(l)gN,t(l)dl, where r(l) is the well-

known semicircle distribution for the eigenvalue of theJi j
random matrix@23#.

In Fig. 6 we show the staggered magnetization, multipl
by the eigenvalue semicircle distributionr(l), compared
with the equilibrium curve@24#. We note a very fast conver
gence of the out-of-equilibrium staggered magnetization
the equilibrium curve, when the system is still very far fro
equilibrium@as revealed by theP(N,t;q) shown in the figure
inset#.

From the measure of the autocorrelation functions,
energy density, and the staggered magnetization, we get
ther insight into the geometrical nature of phase space vis
from the system out-of-equilibrium. First, the wea
ergodicity breaking conditions@10# indicate that the system
always escapes from the visited region~even if more and
more slowly!, i.e., waiting long enough that its configuratio
becomes orthogonal with the ancient one~zero autocorrela-

FIG. 6. Staggered magnetization calculated at different none
librium times~figure from Ref.@19#!. The data refer to a system siz
of N5992 spins evolving atT50.3Tc for different times (t5600,
2000, and 1000 Monte Carlo sweeps!. The full lines correspond to
the prediction of the Parisi mean-field theory for the equilibrium.
the inset we show the overlap distribution for the same times, w
the full line is a sketch of the theoretical~Parisi! P(q). Due to the
self-averageness of the staggered magnetization, we use here
small number of samples, allowing for larger times.
t
li-
e

-

s

d

o

e
r-
d

tion!. The measures of the energy density and of the s
gered magnetization allow a comparison between the ph
space visited in the out-of-equilibrium and the equilibriu
phase space~i.e., the configuration relevant in the Gibbs a
erage!. The out-of-equilibrium energy density seems to
equal to the equilibrium one, and~a stronger condition! the
distribution of the projection of the out-of-equilibrium con
figurations with the eigenvectors of theJi j coupling matrix is
the same as in equilibrium. It seems to show a geometr
self-similarity of the phase space.

The existence and the meaning of a strict relation betw
non-equilibrium dynamics and equilibrium properties of sp
glasses is a very interesting but still open problem, t
stimulated many recent works@25,26#. The difficulties in the
physical comprehension derive usually by the fact that v
different quantities seems to be related~fluctuation dissipa-
tion ratio and equilibrium replicas overlap distribution!. In
this case, the relation between statics and dynamics is b
on the same quantity, the staggered magnetization, that
the same simple geometrical interpretation in statics and
namics~and the same self-averaging properties!.

Our results for the energy density disagree with those
Scharnaglet al. in @27#. The results of their power-law fit on
the first 130 steps for the energy dynamics of an infin
system~they use an interesting new procedure to simul
the dynamics of infinite-sized systems@28#! indicate an
asymptotic energy valuee` different from the equilibrium
value for temperature below 0.5Tc . The numerical method
implemented is based on the parallel dynamics of the Li
model:HJ@s#52 1

2 ( iÞ j Ji j s it j , where thes and thet are
independent degrees of freedom. It can be seen as a gen
ized SK model@that is recovered imposing a constraint (s i
5t i) on the degrees of freedom# or as a very special diluted
SK model. The thermodynamics~equilibrium! of such a
model has been shown@29# to be equivalent to the SK on
~except if a first-order phase transition occurs@30#!. Further
investigation, and an explicit comparison between the n
equilibrium dynamics of the two models, may be needed

C. Clonation procedure

To obtain a clearer picture of the geometrical landsca
where the out-of-equilibrium dynamics takes place, we p
form a particular simulation procedure that we call ‘‘clon
tion’’ @15–18#. Since we are interested in the phase-sp
region visited by the dynamics after a certain timetw , we
proceed to let a single system evolve with the usual Mo
Carlo dynamics until such a time. Attw we create a numbe
of copies of this system, i.e., systems exactly in the sa
configuration~we clone it!. Subsequently we let them~the
original and the clones! evolve independently, that is to sa
with the same Hamiltonian, but different noise realization

There is a difference between these copies~clones! of the
system and the previously definedreplicas. Thereplicasstart
at time t50 from independently chosen configurationsand
evolve with independent dynamics~same Hamiltonian, dif-
ferent noises!, being, in this way, completely independe
systems.

This clonation procedure is different from a damage
spreading procedure~see, for example,@31,32#!, where two
systems starting at a measured distance evolve with the s
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7052 PRE 58ANDREA BALDASSARRI
noise. The damage-spreading procedure was used to
viduate transition temperatures which could be compa
with equilibrium and dynamical transition temperatures.

Our aim here is to investigate the geometry of the ph
space monitoring the autocorrelation function~3!, and the
Clones-Correlation Function, defined by

Q~N,tw!~ t !5K 1/N (
i 51,N

„s i~ t !t i~ t !…L ~5!

(s andt are the spins of two different clones!.
These quantities are simply related to the Euclidean

tance in phase space. The autocorrelation~3! is related to the
Euclidean distance between the configuration of the clone
the timetw ~the same for them all! with its own configuration
at the time t.tw as dC5^(1/N)( i 51,N@s i(tw)2s i(t)#2&
52@12CN(t,tw)#. Similarly, the clones correlation~5! is
related to the distance between the clones~generated at the
time tw) at the time t: dQ5^(1/N)( i 51,N@s i(t)2t i(t)#2&
52@12Q(N,tw)(t)#.

In Fig. 7 we show the results of the measurement. We
that at first we haveC.Q, but, after some time of the orde
of tw , this relation inverts, and we haveQ.C.

~In the present work we do not get the asymptotic limit
Q. Due to the very slow relaxation ofQ, we suspect that it
goes to zero, but we cannot exclude a constant asymp
value different from zero and the issue remains op
@17,18#.!

FIG. 7. Clonation of a system ofN5320 spins at the timetw

5100 Monte Carlo sweeps (T50.2Tc). The plot shows the auto
correlation~3! and the clone-correlation~5! functions.
te
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Remembering the relations of these quantities with
Euclidean distances, it means that at first the clones go a
from each other more than the distance they drift away fr
the initial configuration at the timetw . But afterwards, they
continue their drift standing close and forgetting the initialtw
configuration. The simplest picture representing such a
havior is that of a dynamics following canyons or corrido
at first the clones span the width of the channel and, af
wards, they drift away along it.

If the situation were that of a series of independent tra
~as, for example, in@10#!, we would have seen a differen
behavior, probably withQ5C at long times. Here, we see, a
least, a kind of hierarchy of traps@14#.

IV. CONCLUSIONS

The nonequilibrium dynamics of the SK model displa
characteristic time scales that grow with the size of the s
tem.

In the case of a large system, starting from a rand
configuration, which is equivalent to cooling the syste
abruptly from the high-temperature phase to the gla
phase, the dominant regime is the out-of-equilibrium regi
@during which theq2(N,t) scales to zero as 1/N]. In this
situation the dynamics is nonstationary, presenting gen
aging properties compatible with the scenario of wea
ergodicity breaking. As claimed by recent analytical wor
@21,8,19,26#, the asymptotic configurations reached by an
finite SK model present some similarities with the equili
rium phase space: the out-of-equilibrium staggered magn
zation is equal to the equilibrium one, as is the ene
density@19#. However, the configurations visited by the sy
tem are not real equilibrium configurations and the syst
always escapes from them, never to return. These config
tions present a sort of hierarchical structure. A clonation p
cedure shows that the dynamics takes place following co
dors or canyons. The phase space looks like an almost
labyrinth that the system explores more and more slow
looking for equilibrium. This numerical procedure revea
that the spin-glass dynamics, even in the mean-field c
explores a complicated phase space, which cannot simpl
thought of as a series of barriers and wells~see, for example,
@33–35#!. The problems of the characteristic width of th
‘‘canyons’’ @17# ~related to the asymptotic value of the clon
correlation! or the deep meaning of the ‘‘self-similarity’
with equilibrium are still open.
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