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Numerical study of the out-of-equilibrium phase space of a mean-field spin glass model
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We present a numerical study of the nonequilibrium dynamics of the Sherrington-Kirkpatrick model. We
analyze the behavior of the system for different system sikasd time scaleg in order to identify the correct
out-of-equilibrium regime. We find evidence of aging behavior in the dynamics of the system, compatible with
a weak-ergodicity breaking scenario. In addition, we obtain a pictorial characterization of the out-of-
equilibrium phase space that presents some analogies with the hierarchy of states found in equilibrium.
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I. INTRODUCTION picture of this behavior is obtained by studying the two-times
autocorrelation functions.

The past few years have witnessed an upsurging interest The phase space visited by the system displays an inter-
in the nonequilibrium properties of spin glasgds-3]. Ex-  esting self-similar landscape, which is reminiscent of the hi-
periments have shown a very rich behavior in many differengrarchical structure found for treguilibrium phase space of
materials(see’ for exampldA_G]) that is generica”y defined the mOde[l] -In addition, in order to obtain a pICtOI’Ial view
as the “aging phenomenon.” Simulations carried out forof the dynamics of the system, we use thsmamics clona-
three-dimensional spin glass modgf§ showed some of the  tion technique recently introducdd5-18. In this way, we
characteristicgslow dynamics, agingseen in experiments, SNOW evidence that the system evolves through "valleys”
but a complete theoretical interpretation of the phenomenoﬁnd canyons, rather than jumping between independent
is still lacking. Recently, a theoretical analy§8] of the tr"f‘ras.' . ed as foll In Sec. II
nonequilibrium dynamics of mean-field models, such us the[he m'z dpjpae;ésv%ggggjssa;r(r)leogsﬁe?al ?:g.nsi(;\ga%fr?se%-
Sherrington-Kirkpatrick(SK) model[9], has contributed to

shedding light on the issue. Despite the mean-field approXigardmg different limiting procedures leading to equilibrium

) . S “"or nonequilibrium dynamics. Here we define what we mean
mation, the SK model shows a rich nonequilibrium behavio d y

o0 ) o "for out-of-equilibrium dynamics. Section Il is devoted to the
that is still not completely understood. In particular, it will be |, \merical results. At firs€Sec. 111 A) we present a quantity

interesting to have a clear picture of the phase space in whicfhat we use for the determination of the equilibrium of the
the model evolves, in order to connect its behavior with reystem. By studying its scaling behavior with the size of the
cently proposed phenomenological descriptions of agingystem, we find two different dynamical nonequilibrium re-
phenomen410]. gimes. The scaling of the crossover time between the two

Here we present a numerical study of the out-of-regimes helps us to identify the first one as the authentic
equilibrium dynamics of the SK model, in order to obtain arelevant regime for the out-of-equilibrium dynamics. In Sec.
description of the phase space. We find two clearly distinctil B we focus on thisout-of-equilibrium regimeMeasuring
dynamical regimes: a genuine out-of-equilibrium regime thathe autocorrelation functions we find generic aging proper-
will be dominant in the thermodynamic limit followed by an ties and a scenario compatible wittwaak-ergodicity break-
intermediate regime that is solely due to the finite systemng. The energy density of the system and the staggered mag-
size. The second regime corresponds to the approach to eqlm'etization give further support to the analytical predictions of
librium of a finite system. This result is based on the analysi$8,19. In Sec. IlIC we present the procedure of dynamics
of the dynamical behavior of the mean-square value of thé€lonation[15-18 and report some results obtained with it.
overlap between two replicas, which is commonly employedOur conclusions are given in Sec. IV.
in simulations to determine the equilibration of the system
[11-13. Il. GENERAL CONSIDERATIONS

Once these regimes are clearly identified, we focus our .
analysis on the first regime, which is the one described theo- N the present work we study the Monte Carlo dynamics
retically [8]. We find that the behavior of the system is con- (With the Metropolis sequential updating algorithf the
sistent with the “weak-ergodicity breaking scenario” pro- SK model[9], defined by the Hamiltonian
posed by Bouchauffl0,14. In this scenario, the system is
not cpnfim_ad_ in a finite region of the pha;e space and wan- Ho]=— E 2 Jijoi0 . (1)
ders indefinitely in search of the equilibrium state. A clear 277

TheJ;; are random variables with variance/N, whereN is
*Electronic address: andreab@spec.saclay.cea.fr the total number of spinor size of the systejm
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It is well known[1] that the SK modell) undergoes a equilibration criterion involving only one-time quantities
phase transition af,=1. The order parameter is the Parisi (1TQ). A typical (1TQ), for example, is the energy density of
g(x) function that is related to the overlap distribution func- the system at timé
tion of the equilibrium stateB(q): P(q)=(dg/dx) ! (for a
recent numerical analysis, s¢20]). To monitor the order
parameterg(x), we measure the first nonzero momentum of E(N,t)=(1/N)(H(t)). 4
the P(q) overlap distribution, which, in the zero field case, is

the second momentum. In the simulation, it corresponds to However, in a glassy system, a 1TQ may rga}ch an
asymptotic value, very close to or equal to its equilibrium

2> value, even when the system is very far from equilibrium,

(IN) 2 oi(t)7i(1) (2  i.e., the autocorrelation functiaf) is far from being homo-
=N geneous in times(In this work we try to show that this

happens for the energy density of the SK modé&lonse-

quently, checking for the asymptotic value of a 1TQ only can

nl{aad to erroneous results.

qZ(Nvt):<

Hereo;(t) and7i(t) denote the configuration at tinteof
two realizations of the dynamicsly fixed), with indepen-
dent randomly chosen initial configurations and independe
noise realization(Hereafter we shall call themeplicas) We
follow the standard notation, indicating the thermal average

(different noise realization, but fixel;) with (- - -), and the IIl. NUMERICAL SIMULATIONS
sample averagddifferent chosenJ;;) with ---. In the
present work we always used at least 10 noise realizations A. The overlap as a criterion for equilibration

and 200 different samplgsinless otherwise mentioned
Let us observe that, obviously, during a simulation any,
measured quantit® always depends on the size of the sys-
tem (the number of spindN) and on time(the number of
Monte Carlo sweeps preceding the measuring tilneThe
equilibrium value is given by theasymptotic limit(AL)
lim,__O(N,t)=0(N). The thermodynamical analytical cal-

The quantityq, (2) is often used to determine the equili-
ation of the SK modef{for more subtle equilibration crite-
ria, seg13]). For example, the identity,=1—2TE [12] is
used in[11] to determine the times<t, to skip before col-
lecting the equilibrium measuré€k is the equilibrium value
of the energy densityd): E=lim _lim _[E(N,t)/N]).

On the contrary, in this work, we are interested in the
"dynamical evolution before equilibration

We check explicitly the hypothesis that measuripgep-
resents a good criterion for equilibration, as shown in Fig. 1,

equilibrium properties of the syster_n, we have to consider Tlyhere we confront the measuresapf and of the autocorre-
after AL for the measured quantity. On the contrary, the|tion functions(3).

reverted limiting proceduréAL after TL) may give very We concentrate much of our efforts studyigg before it
different results, especially if the system undergoes a phasgaches the equilibrium value and in particular its scaling
transition, that is, an ergodicity breaking due to the TL.panavior with respect to the size of the system.

Some recent analytical worl{Ql,S]_deal with this opposite We simulate the dynamics af,(N,t) for several system
ordered limit procedure to describe the out-of-equilibriumg;,es at fixed temperature. The valueggfN,t=0) is gen-

properties of spin glasses. We call the asymptotic dynamicg 4y 1N, because the starting configuration for each replica
of an infinite system, in the sense of this order of liNtA&. 5 chosen randomly and independently. A different choice for

after TL), the out-of-equilibrium dynamics _ the starting value of, is not determinant for the subsequent
In a computer simulation, we cannot perform either AL or dynamics, apart from the very first steps.

TL. We qgnsider_ systefrtns thgrﬂwg‘g sizes, and for ﬁ%Ch oge The dynamics of}»(N,t) is characterized by a monotonic
Wﬁ consider a time ? err:/v ich the SKSteml,'t;S equilibratedyq\th (on a logarithmic time scaleup to its equilibrium
The correct criterion for choosing such equilibration time iS50 \ye identify two nonequilibrium regimes, character-

not so trivial, especially for systems like spin glasses_, Whlcr]zed by different scaling properties with respect to the size of
evolve extremely slowly as shown clearly by experiments,,, system

We can consider the simulated spin glass equilibrated when (i) Out-of-
the two-times quantitie€TQ) do not depend explicitly upon
both times, but only upon the time differeng@ne transla-
tional invariancgTTI)]. (We expect that this is enough for a
mean-field model. For example, if we consider the two- a>(N,t)=(1/N)In(t).
times autocorrelation function

culations give the equilibrium value for an infinite system
that is, thethermodynamical limit(TL) of the equilibrium
quantity: lim __O(N)=0Ogq. So, if we are interested in the

equilibrium regimeln the first regimeq,(N,t)
scales as N, with the law

3) In Fig. 2 we show thesize-independepjuantity Ng,(N,t)
versust for systems of different siz§The temperature de-
pendence is restricted to the proportionality constant.

we are sure that the system forgot the initiakQ) randomly (i) Intermediate regimeAs theg,(N,t) reaches a frac-

chosen configuration only for the TTICy(t,t')=Cy(t tion of its equilibrium value, the scaling behavior changes.

—t'). Unfortunately, the measurements of 2TQ are veryFigure 3 shows the departure of tNej,(N,t) from the “uni-

computer time consuming. It would then be better to use awersal” (that is, largeN) curve for systems of different sizes.

Cn(t,t)= 1/N__§1‘,N oi(t)oi(t')
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FIG. 1. The autocorrelation functiori8) become time-homogeneous only whegg{N,t) (in the insetsreaches its equilibrium value. In
(a) the system(64 sping is equilibrated T=0.5T.) as shown by the independence of the autocorrelation func@ghg+t,t,) by t,(t,
=100, 200, 400, 800, and 1600 Monte Carlo sweelsthe insetg,(N,t) has reached its equilibrium value. (b) the system(480 spins,
T=0.5T,) is out-of-equilibrium. The autocorrelation functions show a strong dependecd,,offrom bottom to top, t,
=1000,2000,4000,6000,8000). In the inset the equilibrium valug,¥,t) is greater than 0.3 for the chosen temperafu+€0.5T;). The
data refer to 200 different samplése., 200 different chosefJ; ;}). For each sample we use at least 10 replicae text to measure

qZ(Nvt)'

We tried a fit for this scaling. Here we simply mention that, 40.0 . ; .
qualitatively, we get a N¢ scaling(with « temperature de-
pendent, ranging from 1 to 1/3). We called this new scaling
regime theintermediate regimelLet us note here that the
g»(N,t) is a highly non-self-averaging quantity, and the 300 r
sample-to-sample fluctuations are strong. So a plausible in
terpretation for the intermediate regime behavior is that some__
of the simulated replicas reach equilibrium during this re- Z
gime and the others do not. In this sense we think of thisg"
regime as a transient between the well defined out-of-Z
equilibrium regime and the equilibrium dynamics of the sys-
tem. 10.0 -
The crossover between the two regimes is shown in the
inset of Fig. 3. We define the crossover timgas the time
before the difference between thig,(N,t), and the univer-

sal curve Iin;nu Ng,(N,t) reaches a fixed tolerance value. 0.0 " ' : :
—o 1 10 100 1000

We believe this is a linear behavior. t
Let us note here that an infinite sized system, started from

a random configuratiorti.e., physically, a system after an

infinitely fast quench from very high temperature or mag-

netic field, will always stay in the first out-of-equilibrium seem 10 collapse in the simulated time windotv-@000 Monte

regime. The value of,(t) = I|mN_mq2(N,t) would be iden- Carlo sweeps The data refer to a minimum of 10 replicas for each
tically zero, indicating that each replica is orthogo(@tro  of the 200 samples.

20.0 -

FIG. 2. q,(N,t) in the out-of-equilibrium regime multiplied by
N for systems of different sizedN=64, 96, 160, 640, 1280, and
1920 sping For the chosen temperaturd@=0.2T;) the curves
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FIG. 3. Crossover from the out-of-equilibrium regime to the
intermediate regime. The plot represents the quahdy(N,t) vst
for several systems of growing sizN € 32, 64, 128, 192, 256, 320,
640, and 1280 spinsevolving atT=0.5T.. Note that the curves
associated tdl= 640 andN = 1280 collapse, indicating that the two
systems are still both in the out-of-equilibrium regime for the whole
time window (<100 Monte Carlo sweepsThe curve forN

=1280 has been used as the limiting curve for the determination dfium value. o .
the crossover timetg,). For these curves we have used 1000 A plausible proposal for the limiting curve associated

samples. In the inset the cross-over tintg)(is displayed as a With an infinite system is a step function that, starting from
function of N with a tentative linear fit. E=0, g,=0, abruptly collapses to the constant valke

FIG. 4. Autocorrelation function€(t,,+ 7,t,) vs 7/t,, for dif-
ferent t,(t,,=100, 200, 400, 800, 1000, 1200, 1400, and 1600
Monte Carlo sweeps The data refer to a system bf=640 spins
evolving atT=0.5T...

from equilibrium, but closer to the energy density equilib-

-0.40 T T

scalar product of the vector configuratipngith respect to
the other. It means that each replica visits a different mutu-
ally orthogonal sector of the phase space.

e—o N=64

o—=a N=160

o——— N=320

&—= N=640 b
+—a N=1280

+—v N=2560

—— E(g)=-(1-0,/(2T)

-0.50

B. Out-of-equilibrium regime

As we are interested in the out-of-equilibrium dynamics
of the model, in the sense of the ordered limit procedure ALz -0.60
after TL, we study the dynamics of some quantities in the"
first dynamical regime, i.e., the out-of-equilibrium regime.

The autocorrelation functiot3) shows aging behavior
(see Fig. 4, compatible with the weak-ergodicity breaking -0.70
hypothesig10].

We cannot exclude a nonzero asymoptotic value of the
autocorrelation functions, but as we do not see evidence o
this in our simulated time windows, we will assume in the 08¢ 010 020 050 0,40
discussions a true weak-ergodicity breaking scenario. 9,

Remarkably enough, if we plot the autocorrelation func-

tion C(t,,+ 7,t,,) versusrt/t,,, they do not collapséhere is ’ ,
not a si%plerlv'z law) but all cross at a certain value of g(N.t) (time becoming a paramejeiFrom top to bottom, the
W y : curves refer to growing-sized systems N (

The relaxational dynamlcs_ of the en_ergy density fqr the: 64,160,320,640,1280,2560) evolving at the same temperature

SK model has been extensively studiédr example in —0.5T,. The first two curvegsmaller s ) i
: . . BT, ystemsachieved equilib

[2.2])' Here we Want.to focus on its asymptonc valug. To thlsrium in the simulated time range; the remaining curves refer to
aim, we reparametrize t_he energy density curve with re_Spegystems that did not achieve the equilibrium. The relation shown as
to the overlapqg,, which serves here as a dynamical 5" gyight line [indicating the equilibrium value foE(N,t) and
“clock,” indicating the equilibration stage of the system at (N 1)] is correct for any size with a Gaussian coupling distribu-
time t. tion. In our simulation we do not expect a strict validity of the

Figure 5 shows the result of such reparametrization. Theelation for finite-sized systems, because we use for the couplings
line is the equilibrium relatiorE= — B/2(1—-q). The first  J;; a two-value{—1;1} distribution. Moreover, we have larger er-
two curves refer to systems that reach equilibrium at the enebrs on the abscissa values, due to the lack of self-averageness of
of the simulation. The others, with growing size, are fartherg,(N,t) (large sample-to-sample fluctuations

FIG. 5. Energy densitfg(N,t) versus the corresponding value
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1.0 tion). The measures of the energy density and of the stag-
512600 gered magnetization allow a comparison between the phase
01=2000 space visited in the out-of-equilibrium and the equilibrium

80 ' ' _<>‘e=(;u(i’|ci’k?r?um phase spacé.e., the configuration relevant in the Gibbs av-

erage. The out-of-equilibrium energy density seems to be
equal to the equilibrium one, an@ stronger conditionthe
distribution of the projection of the out-of-equilibrium con-
figurations with the eigenvectors of tlig coupling matrix is

the same as in equilibrium. It seems to show a geometrical

self-similarity of the phase space.

The existence and the meaning of a strict relation between
non-equilibrium dynamics and equilibrium properties of spin
glasses is a very interesting but still open problem, that
stimulated many recent work&5,26|. The difficulties in the
physical comprehension derive usually by the fact that very
different quantities seems to be relatédictuation dissipa-
o0 00 2.0 tion ratio and equilibrium replicas overlap distributjorin

A this case, the relation between statics and dynamics is based

FIG. 6. Staggered magnetization calculated at different nonequig)n the same quantity, the staggered magnetization, that has

librium times(figure from Ref[19]). The data refer to a system size the same simple geometrical Interlpretatlon n statics and dy-
of N=992 spins evolving al =0.3T,, for different times {=600, namics(and the same self-averaglr_lg pff’pe')“es .
2000, and 1000 Monte Carlo swegpshe full lines correspond to Our results f_or the energy density dls_agree with th_ose of
the prediction of the Parisi mean-field theory for the equilibrium. InS(:ha_rm"“-:lbt al.in [27]. The results of their p,OWGr"aW f_'t O_n_
the inset we show the overlap distribution for the same times, whildhe first 130 steps for the energy dynamics of an infinite
the full line is a sketch of the theoreticéaris) P(q). Due to the ~ SyStem(they use an interesting new procedure to simulate
self-averageness of the staggered magnetization, we use here a v dynamics of infinite-sized systeni28]) indicate an
small number of samples, allowing for larger times. asymptotic energy value.. different from the equilibrium
value for temperature below 5. The numerical method
=Eq for q,>0. Besides, it means that this 1TQ does notimplemented is based on the parallel dynamics of the Little
represent a good choice for the determination of the equilimodel:H;[o]=— %E#J-Jijai 7j, where thes and ther are
bration time. To corroborate such a result, we summarizéndependent degrees of freedom. It can be seen as a general-
here previously published resul(ts9]. ized SK modelthat is recovered imposing a constraimt;
Considero, the projection of the configuration vector =r;) on the degrees of freeddmr as a very special diluted
o(t)={oi(t)} on the set of eigenvectod(\) of the cou- SK model. The thermodynamcheqL_J|I|br|um) of such a
pling matrix{J;;}. We measure the so-called staggered magmodel has been showi29] to be equivalent to the SK one
netization, i.e., gNt(’\FW, where o, (1) _(except |f.a first-order phasg transmo!’n occB8]). Further
=), ) bein the coordinates of tHe eigen- investigation, and an explicit comparison between the non-
i=1nhi (D), A 9 " 9 equilibrium dynamics of the two models, may be needed.
vector of the coupling matrixX;_; nJi jAj=AN;).

The staggered magnetization is a distribution that contains
a lot of information. In particular, its first momentum is the _ ) _
energy density (4). More precisely, |m E(N,t) To obtain a clearer picture of the geometrical landscape

. 2 N where the out-of-equilibrium dynamics takes place, we per-

=—limy JZaAp(N)gn(N)dN, wherep(r) is the well- 50, 4 particular simulation procedure that we call “clona-
known semicircle distribution for the eigenvalue of thg  tion” [15-18. Since we are interested in the phase-space
random matriq 23]. region visited by the dynamics after a certain tilgg we

In Fig. 6 we show the staggered magnetization, multipliedoroceed to let a single system evolve with the usual Monte
by the eigenvalue semicircle distributign(\), compared Carlo dynamics until such a time. A, we create a number
with the equilibrium curvd24]. We note a very fast conver- of copies of this system, i.e., systems exactly in the same
gence of the out-of-equilibrium staggered magnetization t@onfiguration(we clone it). Subsequently we let theifthe
the equilibrium curve, when the system is still very far from original and the clongsevolve independently, that is to say
equilibrium[as revealed by thB(N,t;q) shown in the figure with the same Hamiltonian, but different noise realizations.
inset. There is a difference between these cop@snes of the

From the measure of the autocorrelation functions, thesystem and the previously definezblicas Thereplicasstart
energy density, and the staggered magnetization, we get fuat timet=0 from independently chosen configuratioasd
ther insight into the geometrical nature of phase space visitedvolve with independent dynami¢same Hamiltonian, dif-
from the system out-of-equilibrium. First, the weak- ferent noiseg being, in this way, completely independent
ergodicity breaking conditiongl0] indicate that the system systems.
always escapes from the visited regit@ven if more and This clonation procedure is different from a damage-
more slowly, i.e., waiting long enough that its configuration spreading procedurésee, for exampld,31,32), where two
becomes orthogonal with the ancient dzero autocorrela- systems starting at a measured distance evolve with the same

pMIgh)

C. Clonation procedure
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1.00 Remembering the relations of these quantities with the
Euclidean distances, it means that at first the clones go away
from each other more than the distance they drift away from

— 8&*2%’) the initial configuration at the timg, . But afterwards, they

0.90 - continue their drift standing close and forgetting the initjgal
configuration. The simplest picture representing such a be-
havior is that of a dynamics following canyons or corridors:
at first the clones span the width of the channel and, after-
wards, they drift away along it.

If the situation were that of a series of independent traps
(as, for example, if10]), we would have seen a different
behavior, probably witl) = C at long times. Here, we see, at

least, a kind of hierarchy of trag44].

0.80

Qu(ty+7) and C(t,+t.t,)

0.70 +
IV. CONCLUSIONS

The nonequilibrium dynamics of the SK model displays
characteristic time scales that grow with the size of the sys-
tem.

In the case of a large system, starting from a random
FIG. 7. Clonation of a system dfi=320 spins at the tim¢,, ~ configuration, which is equivalent to cooling the system

=100 Monte Carlo sweepsTE0.2T,). The plot shows the auto- abruptly from the high-temperature phase to the glassy
correlation(3) and the clone-correlatiotb) functions. phase, the dominant regime is the out-of-equilibrium regime

[during which theqg,(N,t) scales to zero as NJ. In this

noise. The damage-spreading procedure was used to incRituation the dynamics is nonstationary, presenting generic

viduate transition temperatures which could be compare@9ing Properties compatible with the scenario of weak-
with equilibrium and dynamical transition temperatures. ergodicity breaking. As claimed by recent analytical works

Our aim here is to investigate the geometry of the phas 21,8,19,26, the asymptotic configurations reached by an in-

space monitoring the autocorrelation functié®), and the inite SK model present some similarities with the equilib-
Cl?ones-CorreIati(g)n Functiondefined by ' rium phase space: the out-of-equilibrium staggered magneti-

zation is equal to the equilibrium one, as is the energy
density[19]. However, the configurations visited by the sys-
QiD= { 1N > (a'i(t)Ti(t))> (5)  tem are not real equilibrium configurations and the system
o i=1N always escapes from them, never to return. These configura-
tions present a sort of hierarchical structure. A clonation pro-
(o and 7 are the spins of two different clones cedure shows that the dynamics takes place following corri-
These quantities are simply related to the Euclidean diselors or canyons. The phase space looks like an almost flat
tance in phase space. The autocorrelat®)nis related to the labyrinth that the system explores more and more slowly,
Euclidean distance between the configuration of the clones #boking for equilibrium. This numerical procedure reveals
the timet,, (the same for them gllvith its own configuration that the spin-glass dynamics, even in the mean-field case,
at the timet>t,, as dc=((1N)Z;_1n[oi(tw) — oi(t)]1%) explores a complicated phase space, which cannot simply be
=2[1—-C\(t,t,)]. Similarly, the clones correlatiof6) is  thought of as a series of barriers and wédlse, for example,
related to the distance between the clofgenerated at the [33-35). The problems of the characteristic width of the
time t,) at the timet: do=((1/N)=;_yn[oi(t) — () 1%) “canyor_ws” [17] (related to the a_symptotic value of the qlone
=2[1- Q.1 (t)]. C(_)rrelat|(_)r_) or the dee_p meaning of the “self-similarity”
w cWith equilibrium are still open.

0.60 !
100 1000 10000

t,+T

In Fig. 7 we show the results of the measurement. We s
that at first we hav€>Q, but, after some time of the order
of t,,, this relation inverts, and we hag>C.

(In the present work we do not get the asymptotic limit of ~ We thank L. F. Cugliandolo and J. Kurchan for their col-
Q. Due to the very slow relaxation @&, we suspect that it laboration, and G. Parisi for the helpful supervision, through-
goes to zero, but we cannot exclude a constant asymptotmut the development of this work. We are indebted to F.
value different from zero and the issue remains operRitort, R. Monasson, and S. Zapperi for their careful reading
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